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In this work we study a relative Chebyshev center of K with respect to Y, where
K is a closed bounded convex subset of a Hilbert space X, and Y is a closed convex
subset of X. Some results of Amir and Mach [J. Approx. Theory 40, (1984),
364�374] are extended. � 1997 Academic Press

We use the following notation and definitions: let X be a normed
linear space, X* the dual of X, and F(X ) the set of all closed non-empty
subsets of X; B(x, r)=[z # X : &z&x&�r], S(x, r)=[z # X : &z&x&=r],
S=S(0, 1), and S*=[ f # X*: & f &=1]. Suppose that Y, K # F(X ), and K
is bounded. A nonnegative real number RY (K ) is called the relative
Chebyshev radius of K with respect to Y if RY (K ) is the infimum of all
numbers r>0 for which there exists y # Y such that K is contained in the
ball B( y, r). Any point y # Y for which K/B( y, RY (K )) is called a relative
Chebyshev center of K with respect to Y. We denote the set of all relative
Chebyshev centers of K with respect to Y by ZY (K ); Z(K )=ZX (K ),
R(K )=RX (K ), R( y, K )=R[ y](K ); PY (x)=[z # Y : &x&z&=inf[&x& y& :
y # Y]], and PY is the metric projection onto Y.

In this work we prove some assertions concerning characterization of
relative Chebyshev centers. In Section 1 the main result of the paper is
established that in Hilbert space X for a convex Y # F(X ) and a convex
bounded K # F(Y) the relation ZY (K ) # PY (K ) holds. This extends
Corollary 2.9 of Amir and Mach [1], who assume that K is compact and
convex. In Section 2 we give necessary and sufficient conditions for y to be
the relative Chebyshev center of a convex bounded K # F(X ) with respect
to a convex Y # F(X ), provided that X is Hilbert. When Y is a subspace,
these results are equivalent to those of [1].
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1. MAIN RESULT

To prove Theorem 1 we need the following Lemmas 1 and 2 and a
theorem of A. L. Garkavi.

Lemma 1. Let X be a Banach space, Y # F(X ) a convex set, and
K # F(X ) bounded. If z # ZY (K )"Z(K ), then there exists a functional f # S*
such that

f (z)=sup[ f (v) : v # Y]=inf[ f (v) : v # X, R(v, K )�R(z, K)],

z # ZH(K ), z # ZN(K ),

where

H=[v # X : f (v)= f (z)], N=[v # X : f (v)� f (z)].

Proof. If z # ZY (K )"Z(K ), then R(z, K )<inf[R(v, K ) : v # X )]. By the
triangle inequality the function R( } , K ) is convex and continuous; hence,
the set D=[x # X : R(x, K )<R(z, K )] is non-empty, convex, and open.
Applying the Hahn�Banach theorem and the fact that (z, x]/D for x # D,
we obtain a functional f # S* such that

sup[ f (v) : v # Y]=inf[ f (v) : v # D]= f (z).

Since z # H/N, we have z # ZN(K) and z # ZH(K ).

Theorem A. (A. L. Garkavi [2]). Let X be a Banach space, dim X�3.
If every three-point set of X has Chebyshev center belonging to its affine hull
then X is Hilbert.

The following lemma is an easy consequence of Theorem A.

Lemma 2. Let X be a Banach space, dim X�3. If X is not Hilbert, then
there are three points: x1 , x2 , x3 such that for Y=span[x1 , x2 , x3],
N=conv[x1 , x2 , x3], and K=conv[0, x1 , x2 , x3] we have

dim Y=3, 0 # ZY (N ) & ZY (K ) & ZK (K ),

R(0, K )<inf[R(v, K) : v # conv[x1 , x2 , x3]].

Proof. Since X is not Hilbert and dim X�3, there is a non-Hilbert
subspace Y/X, dim Y=3. By Theorem A there exist three points
x1 , x2 , x3 # Y such that Z(N ) & A=<, where A=aff[x1 , x2 , x3]=aff N.
Obviously dim A=2 and there exists a point w # Y such that R(w, K )=
inf[R(u, K ) : u # Y]. Without loss of generality it may be assumed that
w=0. Then for N, Y, of and K all the assertions of the lemma hold.
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In [1, Corollary 2.9] it was proved that, in a Hilbert space X, if
Y # F(X ) is a convex set and K # F(X ) is convex and compact, then
ZY (K) # PY (K ).

The following theorem improves this result.

Theorem 1. Let X be a Banach space, dim X�3. The following
statements are equivalent:

(i) X is a Hilbert space.

(ii) For every convex set Y # F(X ) and for every convex bounded set
K # F(X ) we have ZY (K )/PY (K ).

(iii) For every two-dimensianal subspace Y/X and for every convex
bounded set K # F(X ), dim K�2, we have ZY (K )/PY (K).

Proof. (i) O (ii). Suppose that the contrary holds: z=ZY (K ), but
z � PY (K ). By Lemma 1 one can find f # S such that

( f, z) =sup[( f, v) : v # Y]

=inf[( f, v) : v # X, R(v, K)�R(z, K )].

Let

H=[x # X : ( f, x)=( f, z)],

N=[x # X : ( f, x)�( f, z)],

l=P&1
N (z).

Denote by L the straight line containing the ray l. We have l & K=<,
since PY (l )=PN(l )=z. By Lemma 1 z # ZN(K).

We see that K is convex. Closed and bounded, and l is boundedly com-
pact, hence, applying the Hahn�Banach theorem we get a hyperplane H1

strictly separating l and K. Let z1=PH1
(z).

We shall prove that z1 # N. If L and H1 are parallel, then by the
orthogonality of L and H we have z1 # H/N. Let L & H1{<. Since H1

strictly separates l and K. L & H1 is a singleton. If L & H1=x, we have
x � l, ( f, x)<( f, z) . Furthermore

x # H1 , z1=PH1
(z);

hence

(x&z1 , z&z1)=0,
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and then

&x&z&2=(x&z, x&z)

=(z&z1 , z&z1) +2(x&z1 , z&z1) +(z&z1 , z&z1)

=&z&z1&2+&x&z1&2;

hence

&x&z&>&x&z1&.

Then

( f, z1)=( f, z) +( f, x&z)+( f, z1&x)

=( f, z) &&x&z&+( f, z&x)

�( f, z) &&x&z&+&z1x&<( f, z) , z1 # N.

Let H2 be the hyperplane which is parallel to H1 and passes through an
arbitrary point y # K, PH2

(z)=v. Then

(z&v, v& y) =0, &z&v&=&z&z1&+&z1&v&.

We have

&z& y&2=(z& y, z& y)

=(z&v, z&v) +2(z&v, v& y)+(v& y, v& y)

=&z&v&2+&v& y&2

=&z&z1&2+2 &z&z1& &z1&v&2+&v& y&2

>&z1&v&2+&v& y&2

=&z1& y&2,

but z=ZN(K ), a contradiction.

Implication (ii) O (iii) is obvious.

(iii) O (i) Let X be not strictly convex, [w1 , w2]/S, w1 {w2 . Take
Y=span[w1 , w2] and K=[w2 , &w1]. We have &w1+w2&=2; hence
0 # ZY (K ); 0 � PY (K )=K.

If X is strictly convex and non-Hilbert, then by Lemma 2 there exist
three points x1 , x2 , x3 # X such that if

L=span[x1 , x2 , x3], N=conv[x1 , x2 , x3],
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then

0 # ZL(N), 0 � aff[x1 , x2 , x3].

Let

v=(x1+x2+x3)�3, f # S*, f (x1&v)=& f & &x1&v&,

Y=[w # L : f (w)=0].

Since X is strictly convex and f (x1&v)=& f & &x1&v&, we have

PY (N )/aff[x1 , x2 , x3].

Then

0 # ZY (N )"PY (N), dim Y=2, dim N=2.

2. CHARACTERIZATION OF CHEBYSHEV CENTERS
IN HILBERT SPACES

Propositions 1 and 2 below are generalizations of Propositions 2.4 and
2.5 in [1], respectively. We apply the sets PY (conv A) instead of conv
(PY (A)) used in [1]. These sets are different in general, however, they
coincide if Y is a closed subspace, as in [1].

Proposition 1. Let X be a Hilbert space, Y # F(X ) a convex set,
K # F(X ) a convex bounded set, y # Y, and r=R( y, K ). Then y=ZY (K ) if
and only if y # PY (conv(K"B( y, t))) for every 0<t<r.

Proof. Let y=ZY (K). By Proposition 2.3 [1] for every 0<t<r, y=
ZY(K"B( y, t))=ZY (conv(K"B( y, t))). By Theorem 1 y # PY (conv(K"B( y, t))).

Assume now that y # PY (conv(K"B( y, t))) for every 0<t<r. Take an
arbitrary point z # Y"[ y]. We shall prove that R(z, K )>R( y, K ). By
assumption there exists w(t) # conv(K"B( y, t)) such that PY (w(t))= y.
Then (z& y, w(t)& y)�0. For every number =>0 there exists a point
x(t) # K"B( y, t) such that (z& y, x(t)& y) �=. We have

(z&x(t), z&x(t))=&z& y&2+&x(t)& y&2&2(z& y, x(t)& y)

�&z& y&2+t2&2=.
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Since t and = can be chosen close enough to r and 0, respectively, we have

R2(z, L)�&z& y&2+R2( y, K ), R(z, K)�R( y, K ).

As z # Y is arbitrary, we have y # ZY (K ).

Proposition 2. Let X be a Hilbert space, Y # F(X ) a convex set,
K # F(X ) a convex compact set, y # Y, and r=R( y, K ). Then y=ZY (K ) if
and only if y # PY (conv(K & S( y, r))).

Proof. Let y=ZY (K). By Proposition 2.2 [1] y=ZY (K & S( y, r))=
ZY (conv(K & S( y, r))). By Theorem 1 y # PY (conv(K & S( y, r))).

Now let y # PY (conv(K & S( y, r))). Then for every 0<t<r # PY (conv
(K"B( y, t))). By Proposition 1 y=ZY (K ).

Theorem 2. Let X be a Banach space, dim X�3. The following
statements are equivalent:

(i) X is a Hilbert space.

(ii) For every bounded convex set K # F(X ), for every point x # ZK (K ),
and for every number t such that 0<t<R(x, K ) we have x # conv(K"B(x, t)).

(iii) For every bounded convex set K # F(X ) and for all x, t such that
0<t<R(x, K ), x # conv(K"B(x, t)), we have x # ZK (K ).

Proof. The implications (i) O (ii) and (i) O (iii) are true by Proposi-
tion 1 (when Y=K ).

(ii) O (i). If X is not a Hilbert space, then by Lemma 2 there are
points x1 , x2 , x3 # X such that for K=conv[0, x1 , x2 , x3] we have

0 # ZK (K ), 0 � aff[x1 , x2 , x3]=L.

Clearly, for N(t)=conv(K"B(0, t)) we have

sup
v # N(t)

inf
w # L

&v&w& � 0

as t � R(0, K ), and (ii) fails.

(iii) O (i). If X is not a Hilbert space, then by Lemma 2

R(0, K )<inf[R(v, K) : v # N]=R,

where

K=conv[0, x1 , x2 , x3], N=conv[x1 , x2 , x3].
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For every point z # N we have

&z&�max[&x1&, &x2&, &x3&]�R(0, K)<R. (1)

Since N is compact and the function R( } , N ) is continuous, ZN(N ) is non-
empty. Let w1 # ZN(N ). Clearly,

R(w1 , N )=R, S(w1 , R) & [x1 , x2 , x3]{<.

Without loss of generality we may assume that x1 # S(w1 , R). If
&x2&w1&<R. &x3&w1&<R, then for a point w2 # (w1 , x1) such that
&w2&w1& is small enough we have &xi&w2&<R (i=1, 2, 3). Hence,
R(w2 , N )<R, but w1 # ZN(N ), w2 # N, a contradiction. Without loss of
generality we may assume that x2 # S(w1 , R). If x3 # S(w1 , R) then, by
(1) and (iii), w1 # ZK (K ), which is impossible. Consider the case
&x3&w1&<R. Let w3=(x1+x2)�2. By the triangle inequality we have
&x1&x2&�2R. If &x1&x2&<2R, then &x1&w3&<R; hence. &x1&w&<R
for an arbitrary point w # (w1 , w3); by analogy, &x2&w&<R. If &w&w1&
is small enough, we have &x3&w&<R, a contradiction in view of
w1 # ZN(N ), w # N. Let &x1&x2&=2R. If &x3&w3&�R, then by inequality
(1) for the point w3 condition (iii) is not true. If &x3&w3&>R, then
by the inequality &x3&w1&<R there exists a point w # (w1 , w3) with
&x3&w&=R. We have

&x1&w&�max[&x1&w3&, &x1&w1&]=R;

similarly, &x2&w&�R; further

2R=&x1&x2&�&x1&w&+&x2&x&�2R;

hence

&x1&w&=&x2&w&=&x3&w&=R.

As above, (iii) fails for x=w.

Remark. Theorem 2 is also true, if we, in addition, assume K to be
compact and replace the condition ``x # conv(K"B(x, t))'' by the condition
``x # conv(K & S(x, R(x, M)).'' Moreover, one can replace the relation
``x # ZK (K )'' by ``x # Z(K ).''
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