Some Remarks on Relative Chebyshev Centers

V. S. Balaganskii

Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia

Communicated by Aldric L. Brown

Received October 19, 1995; accepted in revised form March 27, 1996

In this work we study a relative Chebyshev center of K with respect to Y, where K is a closed bounded convex subset of a Hilbert space X, and Y is a closed convex subset of X. Some results of Amir and Mach [J. Approx. Theory **40**, (1984), 364–374] are extended. © 1997 Academic Press

We use the following notation and definitions: let X be a normed linear space, X* the dual of X, and $\mathscr{F}(X)$ the set of all closed non-empty subsets of X; $B(x, r) = \{z \in X : \|z - x\| \le r\}$, $S(x, r) = \{z \in X : \|z - x\| = r\}$, S = S(0, 1), and $S^* = \{f \in X^* : \|f\| = 1\}$. Suppose that $Y, K \in \mathscr{F}(X)$, and K is bounded. A nonnegative real number $R_Y(K)$ is called the relative Chebyshev radius of K with respect to Y if $R_Y(K)$ is the infimum of all numbers r > 0 for which there exists $y \in Y$ such that K is contained in the ball B(y, r). Any point $y \in Y$ for which $K \subset B(y, R_Y(K))$ is called a relative Chebyshev center of K with respect to Y. We denote the set of all relative Chebyshev centers of K with respect to Y by $Z_Y(K)$; $Z(K) = Z_X(K)$, $R(K) = R_X(K), R(y, K) = R_{\{y\}}(K)$; $P_Y(x) = \{z \in Y : \|x - z\| = \inf\{\|x - y\| : y \in Y\}\}$, and P_Y is the metric projection onto Y.

In this work we prove some assertions concerning characterization of relative Chebyshev centers. In Section 1 the main result of the paper is established that in Hilbert space X for a convex $Y \in \mathscr{F}(X)$ and a convex bounded $K \in \mathscr{F}(Y)$ the relation $Z_Y(K) \in P_Y(K)$ holds. This extends Corollary 2.9 of Amir and Mach [1], who assume that K is compact and convex. In Section 2 we give necessary and sufficient conditions for y to be the relative Chebyshev center of a convex bounded $K \in \mathscr{F}(X)$ with respect to a convex $Y \in \mathscr{F}(X)$, provided that X is Hilbert. When Y is a subspace, these results are equivalent to those of [1].

1. MAIN RESULT

To prove Theorem 1 we need the following Lemmas 1 and 2 and a theorem of A. L. Garkavi.

LEMMA 1. Let X be a Banach space, $Y \in \mathscr{F}(X)$ a convex set, and $K \in \mathscr{F}(X)$ bounded. If $z \in Z_Y(K) \setminus Z(K)$, then there exists a functional $f \in S^*$ such that

$$\begin{split} f(z) &= \sup\{f(v) \colon v \in Y\} = \inf\{f(v) \colon v \in X, \, R(v, K) \leq R(z, K)\},\\ &z \in Z_H(K), \qquad z \in Z_N(K), \end{split}$$

where

$$H = \{ v \in X : f(v) = f(z) \}, \qquad N = \{ v \in X : f(v) \le f(z) \}.$$

Proof. If $z \in Z_Y(K) \setminus Z(K)$, then $R(z, K) < \inf\{R(v, K) : v \in X)\}$. By the triangle inequality the function $R(\cdot, K)$ is convex and continuous; hence, the set $D = \{x \in X : R(x, K) < R(z, K)\}$ is non-empty, convex, and open. Applying the Hahn–Banach theorem and the fact that $(z, x] \subset D$ for $x \in D$, we obtain a functional $f \in S^*$ such that

$$\sup\{f(v): v \in Y\} = \inf\{f(v): v \in D\} = f(z).$$

Since $z \in H \subset N$, we have $z \in Z_N(K)$ and $z \in Z_H(K)$.

THEOREM A. (A. L. Garkavi [2]). Let X be a Banach space, dim $X \ge 3$. If every three-point set of X has Chebyshev center belonging to its affine hull then X is Hilbert.

The following lemma is an easy consequence of Theorem A.

LEMMA 2. Let X be a Banach space, dim $X \ge 3$. If X is not Hilbert, then there are three points: x_1, x_2, x_3 such that for $Y = \text{span}\{x_1, x_2, x_3\}$, $N = \text{conv}\{x_1, x_2, x_3\}$, and $K = \text{conv}\{0, x_1, x_2, x_3\}$ we have

dim
$$Y = 3$$
, $0 \in Z_Y(N) \cap Z_Y(K) \cap Z_K(K)$,
 $R(0, K) < \inf\{R(v, K): v \in \operatorname{conv}\{x_1, x_2, x_3\}\}.$

Proof. Since X is not Hilbert and dim $X \ge 3$, there is a non-Hilbert subspace $Y \subset X$, dim Y = 3. By Theorem A there exist three points $x_1, x_2, x_3 \in Y$ such that $Z(N) \cap A = \emptyset$, where $A = \operatorname{aff}\{x_1, x_2, x_3\} = \operatorname{aff} N$. Obviously dim A = 2 and there exists a point $w \in Y$ such that $R(w, K) = \inf\{R(u, K) : u \in Y\}$. Without loss of generality it may be assumed that w = 0. Then for N, Y, of and K all the assertions of the lemma hold.

In [1, Corollary 2.9] it was proved that, in a Hilbert space X, if $Y \in \mathscr{F}(X)$ is a convex set and $K \in \mathscr{F}(X)$ is convex and compact, then $Z_Y(K) \in P_Y(K)$.

The following theorem improves this result.

THEOREM 1. Let X be a Banach space, dim $X \ge 3$. The following statements are equivalent:

(i) X is a Hilbert space.

(ii) For every convex set $Y \in \mathcal{F}(X)$ and for every convex bounded set $K \in \mathcal{F}(X)$ we have $Z_Y(K) \subset P_Y(K)$.

(iii) For every two-dimensianal subspace $Y \subset X$ and for every convex bounded set $K \in \mathcal{F}(X)$, dim $K \leq 2$, we have $Z_Y(K) \subset \overline{P_Y(K)}$.

Proof. (i) \Rightarrow (ii). Suppose that the contrary holds: $z = Z_Y(K)$, but $z \notin P_Y(K)$. By Lemma 1 one can find $f \in S$ such that

$$\langle f, z \rangle = \sup\{\langle f, v \rangle : v \in Y\}$$

= inf{ $\langle f, v \rangle : v \in X, R(v, K) \leq R(z, K)$ }.

Let

$$H = \{ x \in X \colon \langle f, x \rangle = \langle f, z \rangle \},$$
$$N = \{ x \in X \colon \langle f, x \rangle \leq \langle f, z \rangle \},$$
$$l = P_N^{-1}(z).$$

Denote by L the straight line containing the ray l. We have $l \cap K = \emptyset$, since $P_{Y}(l) = P_{N}(l) = z$. By Lemma 1 $z \in Z_{N}(K)$.

We see that K is convex. Closed and bounded, and l is boundedly compact, hence, applying the Hahn-Banach theorem we get a hyperplane H_1 strictly separating l and K. Let $z_1 = P_{H_1}(z)$.

We shall prove that $z_1 \in N$. If L and H_1 are parallel, then by the orthogonality of L and H we have $z_1 \in H \subset N$. Let $L \cap H_1 \neq \emptyset$. Since H_1 strictly separates l and K. $L \cap H_1$ is a singleton. If $L \cap H_1 = x$, we have $x \notin l, \langle f, x \rangle < \langle f, z \rangle$. Furthermore

$$x \in H_1, \qquad z_1 = P_{H_1}(z);$$

hence

$$\langle x-z_1, z-z_1 \rangle = 0,$$

and then

$$\begin{split} \|x - z\|^2 &= \langle x - z, x - z \rangle \\ &= \langle z - z_1, z - z_1 \rangle + 2 \langle x - z_1, z - z_1 \rangle + \langle z - z_1, z - z_1 \rangle \\ &= \|z - z_1\|^2 + \|x - z_1\|^2; \end{split}$$

hence

$$||x-z|| > ||x-z_1||.$$

Then

$$\begin{split} \langle f, z_1 \rangle &= \langle f, z \rangle + \langle f, x - z \rangle + \langle f, z_1 - x \rangle \\ &= \langle f, z \rangle - \|x - z\| + \langle f, z - x \rangle \\ &\leqslant \langle f, z \rangle - \|x - z\| + \|z_1 x\| < \langle f, z \rangle, \qquad z_1 \in N. \end{split}$$

Let H_2 be the hyperplane which is parallel to H_1 and passes through an arbitrary point $y \in K$, $P_{H_2}(z) = v$. Then

$$\langle z - v, v - y \rangle = 0, \qquad ||z - v|| = ||z - z_1|| + ||z_1 - v||.$$

We have

$$\begin{split} \|z - y\|^2 &= \langle z - y, z - y \rangle \\ &= \langle z - v, z - v \rangle + 2 \langle z - v, v - y \rangle + \langle v - y, v - y \rangle \\ &= \|z - v\|^2 + \|v - y\|^2 \\ &= \|z - z_1\|^2 + 2 \|z - z_1\| \|z_1 - v\|^2 + \|v - y\|^2 \\ &> \|z_1 - v\|^2 + \|v - y\|^2 \\ &= \|z_1 - y\|^2, \end{split}$$

but $z = Z_N(K)$, a contradiction.

Implication (ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i) Let X be not strictly convex, $[w_1, w_2] \subset S, w_1 \neq w_2$. Take $Y = \text{span}\{w_1, w_2\}$ and $K = [w_2, -w_1]$. We have $||w_1 + w_2|| = 2$; hence $0 \in Z_Y(K)$; $0 \notin \overline{P_Y(K) = K}$.

If X is strictly convex and non-Hilbert, then by Lemma 2 there exist three points $x_1, x_2, x_3 \in X$ such that if

$$L = \operatorname{span}\{x_1, x_2, x_3\}, \qquad N = \operatorname{conv}\{x_1, x_2, x_3\},$$

then

$$0 \in Z_L(N), \quad 0 \notin \inf\{x_1, x_2, x_3\}.$$

Let

$$\begin{split} v &= (x_1 + x_2 + x_3)/3, \qquad f \in S^*, \qquad f(x_1 - v) = \|f\| \ \|x_1 - v\|, \\ Y &= \big\{ w \in L \colon f(w) = 0 \big\}. \end{split}$$

Since X is strictly convex and $f(x_1 - v) = ||f|| ||x_1 - v||$, we have

$$P_Y(N) \subset \operatorname{aff}\{x_1, x_2, x_3\}.$$

Then

$$0 \in Z_{Y}(N) \setminus \overline{P_{Y}(N)}, \quad \dim Y = 2, \quad \dim N = 2$$

2. CHARACTERIZATION OF CHEBYSHEV CENTERS IN HILBERT SPACES

Propositions 1 and 2 below are generalizations of Propositions 2.4 and 2.5 in [1], respectively. We apply the sets $P_Y(\overline{\text{conv}} A)$ instead of $\overline{\text{conv}}(P_Y(A))$ used in [1]. These sets are different in general, however, they coincide if Y is a closed subspace, as in [1].

PROPOSITION 1. Let X be a Hilbert space, $Y \in \mathcal{F}(X)$ a convex set, $K \in \mathcal{F}(X)$ a convex bounded set, $y \in Y$, and r = R(y, K). Then $y = Z_Y(K)$ if and only if $y \in P_Y(\overline{\text{conv}}(K \setminus B(y, t)))$ for every 0 < t < r.

Proof. Let $y = Z_Y(K)$. By Proposition 2.3 [1] for every 0 < t < r, $y = Z_Y(K \setminus B(y, t)) = Z_Y(\overline{\text{conv}}(K \setminus B(y, t)))$. By Theorem 1 $y \in P_Y(\overline{\text{conv}}(K \setminus B(y, t)))$.

Assume now that $y \in P_Y(\overline{\operatorname{conv}}(K \setminus B(y, t)))$ for every 0 < t < r. Take an arbitrary point $z \in Y \setminus \{y\}$. We shall prove that R(z, K) > R(y, K). By assumption there exists $w(t) \in \overline{\operatorname{conv}}(K \setminus B(y, t))$ such that $P_Y(w(t)) = y$. Then $\langle z - y, w(t) - y \rangle \leq 0$. For every number $\varepsilon > 0$ there exists a point $x(t) \in K \setminus B(y, t)$ such that $\langle z - y, x(t) - y \rangle \leq \varepsilon$. We have

$$\langle z - x(t), z - x(t) \rangle = ||z - y||^2 + ||x(t) - y||^2 - 2\langle z - y, x(t) - y \rangle$$

 $\ge ||z - y||^2 + t^2 - 2\varepsilon.$

Since t and ε can be chosen close enough to r and 0, respectively, we have

$$R^{2}(z, L) \ge ||z - y||^{2} + R^{2}(y, K), \qquad R(z, K) \ge R(y, K).$$

As $z \in Y$ is arbitrary, we have $y \in Z_Y(K)$.

PROPOSITION 2. Let X be a Hilbert space, $Y \in \mathcal{F}(X)$ a convex set, $K \in \mathcal{F}(X)$ a convex compact set, $y \in Y$, and r = R(y, K). Then $y = Z_Y(K)$ if and only if $y \in P_Y(\overline{\text{conv}}(K \cap S(y, r)))$.

Proof. Let $y = Z_Y(K)$. By Proposition 2.2 [1] $y = Z_Y(K \cap S(y, r)) = Z_Y(\overline{\text{conv}}(K \cap S(y, r)))$. By Theorem 1 $y \in P_Y(\overline{\text{conv}}(K \cap S(y, r)))$.

Now let $y \in P_Y(\overline{\text{conv}}(K \cap S(y, r)))$. Then for every $0 < t < r \in P_Y(\overline{\text{conv}}(K \setminus B(y, t)))$. By Proposition 1 $y = Z_Y(K)$.

THEOREM 2. Let X be a Banach space, dim $X \ge 3$. The following statements are equivalent:

(i) X is a Hilbert space.

(ii) For every bounded convex set $K \in \mathcal{F}(X)$, for every point $x \in Z_K(K)$, and for every number t such that 0 < t < R(x, K) we have $x \in \overline{\operatorname{conv}}(K \setminus B(x, t))$.

(iii) For every bounded convex set $K \in \mathscr{F}(X)$ and for all x, t such that $0 < t < R(x, K), x \in \overline{\operatorname{conv}}(K \setminus B(x, t))$, we have $x \in Z_K(K)$.

Proof. The implications (i) \Rightarrow (ii) and (i) \Rightarrow (iii) are true by Proposition 1 (when Y = K).

(ii) \Rightarrow (i). If X is not a Hilbert space, then by Lemma 2 there are points $x_1, x_2, x_3 \in X$ such that for $K = \overline{\text{conv}}\{0, x_1, x_2, x_3\}$ we have

 $0 \in Z_K(K), \quad 0 \notin \inf\{x_1, x_2, x_3\} = L.$

Clearly, for $N(t) = \overline{\text{conv}}(K \setminus B(0, t))$ we have

$$\sup_{v \in N(t)} \inf_{w \in L} \|v - w\| \to 0$$

as $t \to R(0, K)$, and (ii) fails.

(iii) \Rightarrow (i). If X is not a Hilbert space, then by Lemma 2

$$R(0, K) < \inf\{R(v, K) : v \in N\} = R,$$

where

$$K = \overline{\operatorname{conv}}\{0, x_1, x_2, x_3\}, N = \overline{\operatorname{conv}}\{x_1, x_2, x_3\}.$$

For every point $z \in N$ we have

$$||z|| \le \max\{||x_1||, ||x_2||, ||x_3||\} \le R(0, K) < R.$$
(1)

Since N is compact and the function $R(\cdot, N)$ is continuous, $Z_N(N)$ is nonempty. Let $w_1 \in Z_N(N)$. Clearly,

$$R(w_1, N) = R, \qquad S(w_1, R) \cap \{x_1, x_2, x_3\} \neq \emptyset.$$

Without loss of generality we may assume that $x_1 \in S(w_1, R)$. If $||x_2 - w_1|| < R$. $||x_3 - w_1|| < R$, then for a point $w_2 \in (w_1, x_1)$ such that $||w_2 - w_1||$ is small enough we have $||x_i - w_2|| < R$ (i = 1, 2, 3). Hence, $R(w_2, N) < R$, but $w_1 \in Z_N(N)$, $w_2 \in N$, a contradiction. Without loss of generality we may assume that $x_2 \in S(w_1, R)$. If $x_3 \in S(w_1, R)$ then, by (1) and (iii), $w_1 \in Z_K(K)$, which is impossible. Consider the case $||x_3 - w_1|| < R$. Let $w_3 = (x_1 + x_2)/2$. By the triangle inequality we have $||x_1 - x_2|| \leq 2R$. If $||x_1 - x_2|| < 2R$, then $||x_1 - w_3|| < R$; hence. $||x_1 - w_1|| < R$ for an arbitrary point $w \in (w_1, w_3)$; by analogy, $||x_2 - w|| < R$. If $||w - w_1||$ is small enough, we have $||x_3 - w|| < R$, a contradiction in view of $w_1 \in Z_N(N)$, $w \in N$. Let $||x_1 - x_2|| = 2R$. If $||x_3 - w_3|| \leq R$, then by inequality (1) for the point w_3 condition (iii) is not true. If $||x_3 - w_3|| > R$, then by the inequality $||x_3 - w_1|| < R$ there exists a point $w \in (w_1, w_3)$ with $||x_3 - w|| = R$. We have

$$||x_1 - w|| \le \max\{||x_1 - w_3||, ||x_1 - w_1||\} = R;$$

similarly, $||x_2 - w|| \leq R$; further

$$2R = \|x_1 - x_2\| \le \|x_1 - w\| + \|x_2 - x\| \le 2R;$$

hence

$$||x_1 - w|| = ||x_2 - w|| = ||x_3 - w|| = R$$

As above, (iii) fails for x = w.

Remark. Theorem 2 is also true, if we, in addition, assume K to be compact and replace the condition " $x \in \overline{\text{conv}}(K \setminus B(x, t))$ " by the condition " $x \in \overline{\text{conv}}(K \cap S(x, R(x, M)))$." Moreover, one can replace the relation " $x \in Z_K(K)$ " by " $x \in Z(K)$."

REFERENCES

- 1. D. Amir and J. Mach, Chebyshev centers in normed spaces, J. Approx. Theory 40 (1984), 364-374.
- 2. A. L. Garkavi, The Chebyshev center and the convex hull of a set, Uspekhi Mat. Nauk 19 (1964), 139–145.